\(\frac{\cdots}{0}\) kan alleen maar gelijk zijn aan \(\sqrt3\) als we te doen hebben met een onbepaalde vorm \(\frac{0}{0}\).
Dus moet \(\displaystyle\lim_{x\to0}\:\left(\sqrt{a+bx}-\sqrt3\right)=0\). Dit gebeurt als \(\sqrt a-\sqrt3=0\;\Leftrightarrow\;a=3\).
De gegeven limiet wordt dan
Uit de eis dat \(\frac{b}{2\sqrt3}\) gelijk moet zijn aan \(\sqrt3\) kunnen we besluiten dat b = 6.
Het antwoord is dus a + b = 3 + 6 = 9