In ΔABC is \(\boldsymbol{\frac{c\,-\,a.\cos B}{a.\sin B} }\) gelijk aan
(A,B,C zijn de grootten van de hoeken tegenover de zijden met lengten a,b,c)
| A. sin A |
B. cos A |
C. tan A |
D. cot A |
E. sec A |
[ 4-7972 - op net sinds 26.8.15-()-4.12.2023 ]
Translation in E N G L I S H
In ΔABC is \(\boldsymbol{\frac{c\,-\,a.\cos B}{a.\sin B} }\) equal to
(A,B,C are the measures of the angles oposite the sides a, b and c.)
| A. sin A |
B. cos A |
C. tan A |
D. cot A |
E. sec A |
Oplossing - Solution
Wegens de sinusregel \(\frac{a}{sin{A}}=\frac{b}{sin{B}}=\frac{c}{sin{C}}=2R\) kunnen we c vervangen door 2R.sin C
en a door 2R.sin A.
Dan is
\(\large\frac{c-a.cos{B}}{a.sin{B}}=\frac{2Rsin{C}-2Rsin{A}.cos{B}}{2R.sin{A}.sin{B}}=\frac{sin{C}-sin{A}.cos{B}}{sin{A}.sin{B}}=\frac{sin{(}A+B)-sin{A}.cos{B}}{sin{A}.sin{B}}\\
=\frac{sin{A}cos{B}\,+\,cos{A}sin{B}\,-\,sin{A}.cos{B}}{sin{A}.sin{B}}=\frac{cos{A}sin{B}}{sin{A}.sin{B}}=\frac{cos{A}}{sin{A}}=cot{A} \)