tan (Bgsin x) = A.    \(\boldsymbol x \)
B.  \(\boldsymbol{x.\sqrt {1-x^2} }\)
C.  \(\boldsymbol{\sqrt {1-x^2} }\)
D.  \(\large\boldsymbol{\frac {1} {\sqrt {1-x^2}} }\)
E.  \(\large\boldsymbol{\frac {x} {\sqrt {1\,-\,x^2}} }\)
                 

[ 5-1977 - op net sinds 20.3.15-(E)-4.11.2023 ]

Translation in   E N G L I S H

IN CONSTRUCTION
tan( arctan(x) ) =
A.  
B.  
C.  
D.  
E.  

Oplossing - Solution

Stel  Bgsin x = t. Dan is   x = sin t  ∧  t ∈ [\(-\,\frac{\pi}{2},+\frac{\pi}{2}\)] (*)
Dus is  1 − x² = 1 − sin² t = cos² t en wegens de formule \(1\!+\!\tan^2\alpha=\frac{1}{\cos^2\alpha}\) is ook \(\sqrt{1-x^2}=\cos t \)   (en NIET − cos t wegens (*) )
Bijgevolg is  tan (Bgsin x) = tan t = \(\frac {\sin t} {\cos t}=\frac{x}{\sqrt{1-x^2}} \)