Pass Transistor Circuits

Dr DC Hendry

October 2007
Outline

1. Pass Transistor Circuits
2. The CMOS Transmission Gate
3. Design Example
4. Transmission Gate Design Methodology
We can view the complementary CMOS gate as switching the output pin to one of power or ground.
We can view the complementary CMOS gate as switching the output pin to one of power or ground.

A slightly more general gate is obtained if we switch the output to one of power; ground; or any of the input signals.
We can view the complementary CMOS gate as switching the output pin to one of power or ground.

A slightly more general gate is obtained if we switch the output to one of power; ground; or any of the input signals.

In such designs the MOSFET is considered to be a pass transistor.
We can view the complementary CMOS gate as switching the output pin to one of power or ground.

A slightly more general gate is obtained if we switch the output to one of power; ground; or any of the input signals.

In such designs the MOSFET is considered to be a pass transistor.

When used as a pass transistor the device may conduct current in either direction.
Pass Transistor Truth Table

\[\begin{array}{ccc}
A & B & X \\
0 & 0 & Z \\
\end{array} \]
Pass Transistor Circuits

The CMOS Transmission Gate
Design Example
Transmission Gate Design Methodology

Pass Transistor Truth Table

\[
\begin{array}{ccc}
A & B & X \\
0 & 0 & Z \\
0 & 1 & 0 \\
\end{array}
\]
Pass Transistor Truth Table

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Z</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Z</td>
</tr>
</tbody>
</table>
Pass Transistor Circuits
The CMOS Transmission Gate
Design Example
Transmission Gate Design Methodology

Pass Transistor Truth Table

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Z</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Z</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Properties of Pass Transistors

For the n-channel pass transistor circuit note that:

1. “Z” in the truth table implies a floating node.

2. For the n-channel pass transistor, when A = B = 1, the output voltage at X is:

 \[V_x = \min(\ V_B - V_t, \ V_A) \]

3. This if \(V_A = V_B = 3 \) and \(V_B = 0 \) then \(V_x = 2 \).

4. This reduction in output voltage makes cascading of pass transistor circuits difficult.
Properties of Pass Transistors

For the n-channel pass transistor circuit note that:

1. “Z” in the truth table implies a floating node.
2. For the n-channel pass transistor, when $A = B = 1$, the output voltage at X is:

$$V_x = \min(V_B - V_t, V_A)$$
For the n-channel pass transistor circuit note that:

1. “Z” in the truth table implies a floating node.
2. For the n-channel pass transistor, when \(A = B = 1 \), the output voltage at \(X \) is:

\[
V_x = \min(V_B - V_t, V_A)
\]

3. This if \(V_A = V_B = 3.3V \) and \(V_t = 0.6V \) then \(V_x = 2.7V \).
Properties of Pass Transistors

For the n-channel pass transistor circuit note that:

1. “Z” in the truth table implies a floating node.
2. For the n-channel pass transistor, when \(A = B = 1 \), the output voltage at \(X \) is:
 \[
 V_x = \min(V_B - V_t, V_A)
 \]
 This if \(V_A = V_B = 3.3V \) and \(V_t = 0.6V \) then \(V_x = 2.7V \).
3. This reduction in output voltage makes cascading of pass transistor circuits difficult.
Cascaded Pass Transistors

Figure: Cascaded pass transistors

Vdd

Vdd

Vdd

Vdd

Vdd

Vdd

Vdd - Vt

Vdd - 2Vt

Vdd - 3Vt

Vdd - 2Vt

Vdd - 3Vt

Vdd - Vt

Vdd - 3Vt
1. With an n-channel transistor high voltages are degraded by one V_t.
1. With an n-channel transistor high voltages are degraded by one V_t.

2. Similar circuits with a p-channel device “degrade” (by increasing) a logic zero by one V_t.
1. With an n-channel transistor high voltages are degraded by one V_t.
2. Similar circuits with a p-channel device “degrade” (by increasing) a logic zero by one V_t.
3. So such circuits are normally confined to the internal circuitry of a gate.
1. With an n-channel transistor high voltages are degraded by one V_t.

2. Similar circuits with a p-channel device “degrade” (by increasing) a logic zero by one V_t.

3. So such circuits are normally confined to the internal circuitry of a gate.

4. Full logic levels can be regenerated with an inverter at the output of the gate.
Two-to-One Mux

Figure: Two-to-one Mux
When $S = 1$ the output Z is connected to B
When $S = 1$ the output Z is connected to B

When $S = 0$ the output Z is connected to A
Two-to-One Mux - 2

- When \(S = 1 \) the output \(Z \) is connected to \(B \)
- When \(S = 0 \) the output \(Z \) is connected to \(A \)
- Note that the connection made is *bidirectional*
The CMOS transmission gate consists of two MOSFETs, one n-channel responsible for correct transmission of logic zeros,
The CMOS Transmission Gate

The CMOS transmission gate consists of two MOSFETs, one n-channel responsible for correct transmission of logic zeros, and one p-channel, responsible for correct transmission of logic ones.
The CMOS transmission gate consists of two MOSFETs, one n-channel responsible for correct transmission of logic zeros, and one p-channel, responsible for correct transmission of logic ones.

![CMOS Transmission Gate Circuit](image)

Figure: CMOS Transmission Gate Circuit

When $C = 1$, A and B are connected, both logic zero and logic one can be transmitted without degradation.
Transmission gates are widely used and shorthand symbols are used.
Transmission gates are widely used and shorthand symbols are used.

- The standard symbol (not used often) is:

```
  C
A -- X -- B
  C
```

- The most commonly used symbol is simply:

```
  A -- B
      C
```
Transmission gates are widely used and shorthand symbols are used.

The standard symbol (not used often) is:

\[C \]

\[\overline{C} \]

\[\begin{array}{c}
 \text{A} \\
 \text{B} \\
 \text{C}
\end{array} \]

The most commonly used symbol is simply:

\[\begin{array}{c}
 \text{A} \\
 \text{B} \\
 \text{C}
\end{array} \]
A common design technique used with transmission gate structures is the use of multiplexor based architectures. Consider the Boolean function

$$f = A \overline{S}_2 S_1 + B \overline{S}_2 . \overline{S}_1 + 1 . S_2 S_1 + 0 . S_2 S_1$$
A common design technique used with transmission gate structures is the use of multiplexor based architectures. Consider the Boolean function

\[f = A \overline{S_2} \overline{S_1} + B \overline{S_2} . \overline{S_1} + \overline{S_2} S_1 \]
A common design technique used with transmission gate structures is the use of multiplexor based architectures. Consider the Boolean function

\[f = A S_2 \overline{S_1} + B \overline{S_2} \overline{S_1} + \overline{S_2} S_1 \]

This may be rewritten as (the reason will become clear later):

\[f = A S_2 \overline{S_1} + B \overline{S_2} \overline{S_1} + 1 \overline{S_2} S_1 + 0 \overline{S_2} S_1 \]
Transmission Gate Implementation:

Figure: Implementation with Transmission Gates
Note the need for the term $0.S_1S_2$. If not present then when $S_1 = S_2 = 1$ the output f would float.
1. Note the need for the term $0.S_1S_2$. If not present then when $S_1 = S_2 = 1$ the output f would float.

2. Each transmission gate may now be replaced with two transistors.
1. Note the need for the term $0.S_1S_2$. If not present then when $S_1 = S_2 = 1$ the output f would float.

2. Each transmission gate may now be replaced with two transistors.

3. Where lines connect only to logic 1 the nMOS devices may be omitted.
1. Note the need for the term $0.S_1S_2$. If not present then when $S_1 = S_2 = 1$ the output f would float.

2. Each transmission gate may now be replaced with two transistors.

3. Where lines connect only to logic 1 the nMOS devices may be omitted.

4. Where lines connect only to logic 0 the pMOS devices may be omitted.
1. Note the need for the term $0.S_1S_2$. If not present then when $S_1 = S_2 = 1$ the output f would float.

2. Each transmission gate may now be replaced with two transistors.

3. Where lines connect only to logic 1 the nMOS devices may be omitted.

4. Where lines connect only to logic 0 the pMOS devices may be omitted.

5. nMOS and pMOS devices may be grouped to minimise the number of wells required.
Transistor Schematic

Figure: Transistor Level Schematic for Design
Design Methodology

A suitable design methodology, in addition to the correct logic output, must ensure:
Design Methodology

A suitable design methodology, in addition to the correct logic output, must ensure:

- The output is always driven to logic 1 or logic 0.
A suitable design methodology, in addition to the correct logic output, must ensure:

- The output is always driven to logic 1 or logic 0.
- There are no "sneak" paths, such as:
Viable design approaches are:

- Choose a number of inputs as mux select inputs and proceed as above.
Viable design approaches are:

- Choose a number of inputs as mux select inputs and proceed as above.
- Plot variables on K-maps.
Viable design approaches are:

- Choose a number of inputs as mux select inputs and proceed as above.
- Plot variables on K-maps.
- Tabular methods such as modifications of Quine-McCluskey - not covered here.
Plotting Variables

\[f = \overline{a} \overline{b} + \overline{b} \overline{c} \overline{d} + acd \]
Plotting Variables

\[f = \overline{a} \overline{b} + b\overline{c}\overline{d} + acd \]

and we will look for a network using \(d\) and \(\overline{d}\) as inputs. Plotting the function on a K-Map gives:
\[f = \overline{a} \overline{b} + b \overline{c} \overline{d} + acd \]

and we will look for a network using \(d \) and \(\overline{d} \) as inputs. Plotting the function on a K-Map gives:
Plotting again with d as input

Now plot the K-Map using d as an input, giving:

$$f = \overline{a} \overline{b} + b \overline{c} \overline{d} + ac \overline{d} + \overline{a} \overline{b} \overline{c} + \overline{a} \overline{b} \overline{c} \overline{d}$$
Now plot the K-Map using d as an input, giving:

![K-Map Diagram]

Giving the Boolean expression for f as:

$$f = \overline{a}\overline{b} + b\overline{c}d + a\overline{b}\overline{c}.0 + \overline{a}bc.0$$
Plotting again with d as input

Now plot the K-Map using \(d \) as an input, giving:

\[
\begin{array}{c|cccc}
 & 00 & 01 & 11 & 10 \\
\hline
0 & 1 & d & d & 0 \\
1 & 1 & 0 & d & d \\
\end{array}
\]

Giving the Boolean expression for \(f \) as:

\[
f = 1 \cdot \bar{a}b + b\bar{c}d + ac \cdot d + a\bar{b}\bar{c} \cdot 0 + \bar{a}bc \cdot 0
\]